
1st Maastricht E-AHPBA Post-Graduate HPB Course

Assessment of Hepatic Volume and Function

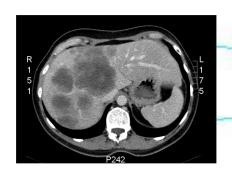
Thomas van Gulik
Dept.of Surgery
Academic Medical Center
University of Amsterdam
The Netherlands

Disclosure slide for speakers at further training events

Disclosure of speaker's interests				
(Potential) conflict of interest	None/See below			
Potentially relevant company relationships in connection with event ¹	Company names			
 Sponsorship or research funding² Fee or other (financial) payment³ Shareholder⁴ Other relationship, i.e⁵ 	•			

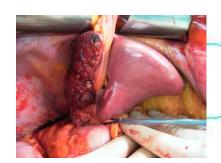
Assessment of hepatic volume and function

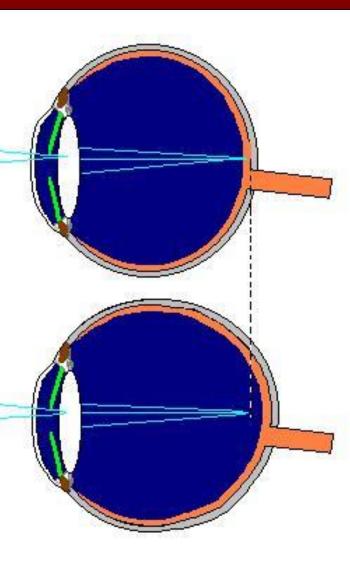
 The single most important determinant of mortality after liver resection is postresectional liver failure (Reported mortality up to 90%)

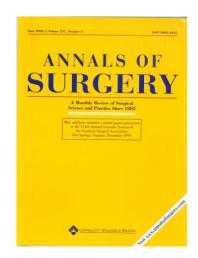

Assessment of hepatic volume and function

- The single most important determinant of mortality after liver resection is postresectional liver failure (Reported mortality up to 90%)
- Too small liver remnant
 Too little volume (= function?)

HOW TO ASSESS?

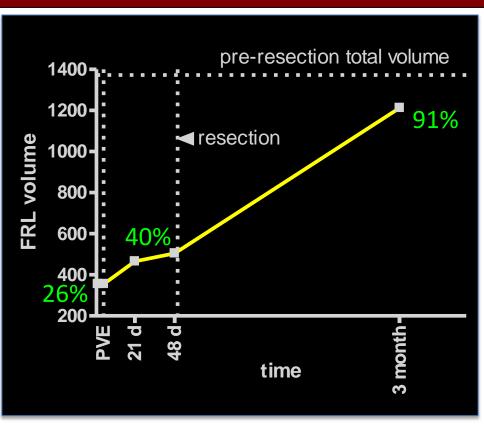



Eyeball assessment


Liver remnant on CT

Annals of Surgery **2002**; 236(4):397-407

Improvement in Perioperative Outcome After Hepatic Resection Analysis of **1,803** Consecutive Cases Over the Past Decade


William R. Jarnagin, Mithat Gonen, Yuman Fong, Ronald P. DeMatteo, Leah Ben-Porat, Sarah Little, Carlos Corvera, Sharon Weber, Leslie H. Blumgart.

The number of hepatic segments resected and operative blood loss were the only predictors of both perioperative morbidity (45%) and mortality (3.1%)

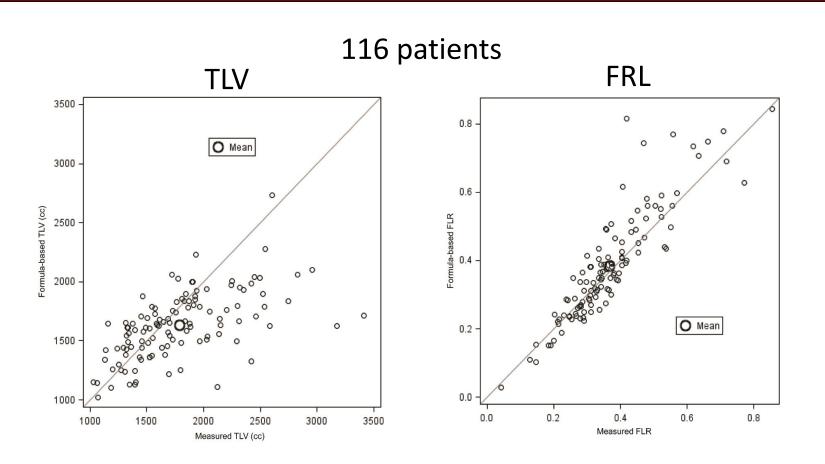
Volumetric studies

- CT-volumetry (FRLV)
- Standardized FRLV (BSA)
- FRL/body weight ratio (0.5%)

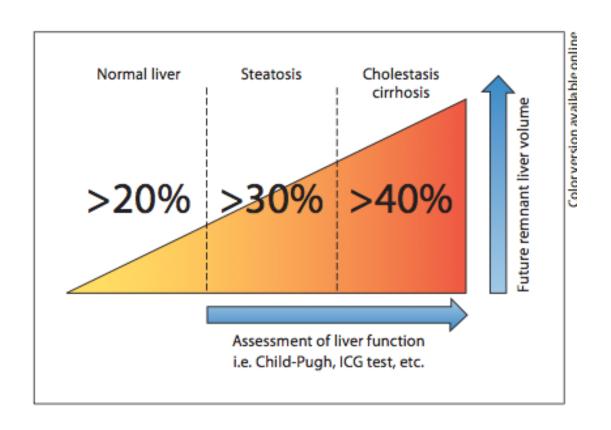
Truant et al, J Am Coll Surg 2007 Kishi et al, Ann Surg 2009 vd Esschert et al, J Gastrointest Surg 2009

Remnant liver volume 1240cc

Standardized FRL volume

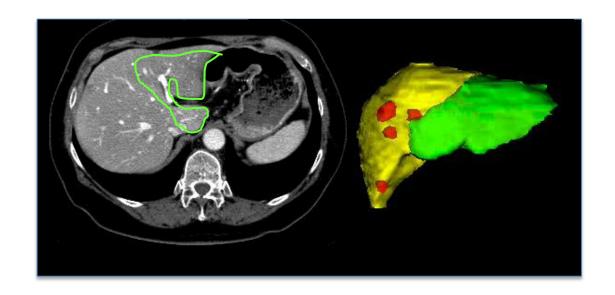

RLV (measured by CT volumetry)

TLV (based on BSA or body weight)


 $TLV = -794.41 + 1,267.28 \times BSA$ (square meters) $TLV = 191.80 + 18.51 \times weight$ (kilograms)

Vauthey et al, Surgery, 2000 Vauthey et al, Liver Transplantation, 2002 Abdalla, Arch Surg, 2002

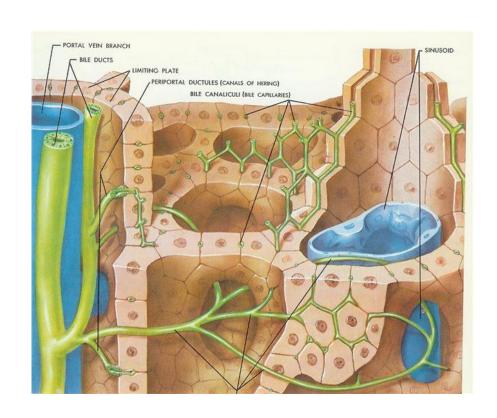
Measured vs standardized FRL volume



Volumetric studies

am

Assessment of hepatic volume and function



Volume ≠ Function

Liver function

- Uptake
- Synthesis
- Biotransformation
- Excretion

Hoekstra et al, Ann Surg 2012 Cieslak et al, DigSurg 2014

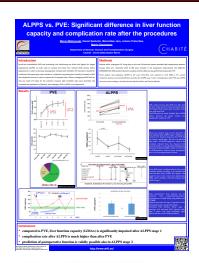
Assessment of hepatic volume and function

There is not one single test that can predict all liver functions

Conventional tests	Function and/or event measured		
Serum bilirubin	Uptake, conjugation, excretion		
Serum bile acids	Excretion, shunting		
Alkaline phosphatase	Cholestasis		
Gamma-glutamyl transpeptidase	Cholestasis, enzyme induction, alcohol abuse		
Transaminases	Necrosis		
Coagulation factors, prothrombin time	Synthesis		
Albumin	Synthesis, loss		
Quantitative tests	Function tested		
Aminopyrine breath test	Microsomal function		
Antipyrine clearance	Microsomal function		
Caffeine clearance	Microsomal function		
Lidocaine clearance (MEGX)	Microsomal function		
Methacetin breath test	Microsomal function		
Galactose elimination capacity (GEC)	Cytosolic function		
Low-dose galactose clearance	Hepatic perfusion (liver blood flow)		
Sorbitol clearance	Hepatic perfusion (liver blood flow)		
Indocyanine green disappearance	Hepatic perfusion, anion excretion		
Albumin synthesis	Synthetic function		
Urea synthesis	Synthetic function		
99mTc-GSA	Functional hepatocyte mass		

Hoekstra et al, Ann Surg 2012 Cieslak et al, DigSurg 2014

Quantitative biochemical tests


- ICG clearance test (hepatic perfusion)
- Galactose elimination test (hepatic cell mass)
- Caffeine elimination test (cytochrome P450 activity)
- Amino acid clearance (protein synthesis)
- Aminopyrine breath test (cytochrome P450 activity)
- Lidocaine elimination test (MEGX test)

Quantitative liver function tests

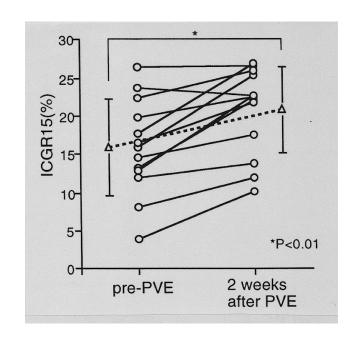
- ICG clearance test Lau et al, BJS 97
- Limax test (Aminopyrine breath test)

 Stockmann et al, HPB 2010
- Functional imaging using MRI Nilsson, B J Rad 2013
- Scintigraphic methods De Graaf et al, J Nucl Med 2010

Indocyanine green (ICG) clearance test

- ICG tricarbocyanine dye that binds to albumin and alpha-1-lipoproteins
- Uptake by OATP: organic anion transporting polypeptide
- Excretion through MRP2: multidrug resistance related protein
- Determined by blood sampling or pulsed spectrophotometry
- Safe clearance values: ICG C-15 > 86%

The ICG clearance test is the best discriminating preoperative test for evaluating hepatic functional reserve in patients with HCC *H Lau et al, BJS, 1997*


Drawbacks:

- Influence of hepatic bloodflow
- Regional variations within the liver are not detected
- Influence of hyperbilirubinemia

Influence of hepatic bloodflow on ICG clearance

ICG-15 clearance test worsened at 2 weeks after portal vein embolization (PVE)

Wakabayashi H, Jpn J Surg, 1997

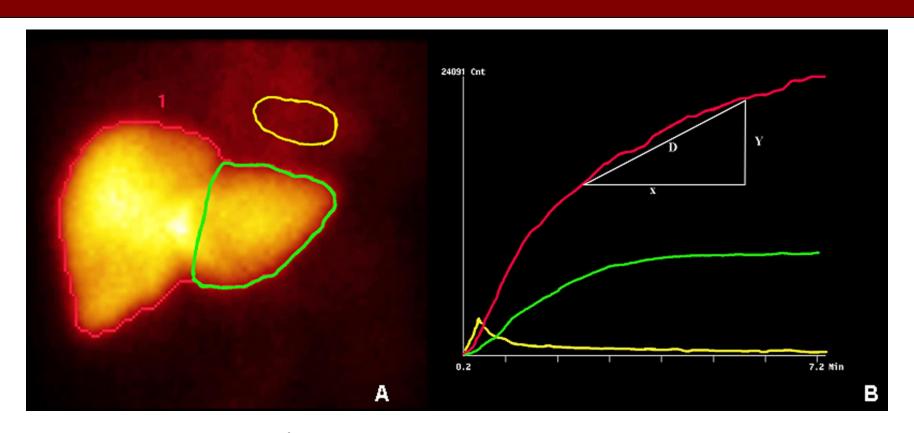
Return to baseline values 6-8 weeks after PVE

Scintigraphic imaging studies

- Provides simultaneous morphologic (visual) and physiologic (functional) information
- Defines regional hepatic function
- Dynamic SPECT allows measurement of functional volume of the liver
- Two phases: hepatic uptake and excretion

Liver scintigraphic studies

- Tc-99m-galactosyl serum albumin (GSA) binds to asialoglycoprotein receptors
 - relation with hepatoycyte cell mass?
 - influence of hepatic bloodflow?
 - no biliary excretion phase
 - availability of radiopharmaceutical?
- Tc-99m-colloid Kupffer cell mass
- Tc-99m-IDA (Mebrofenin)



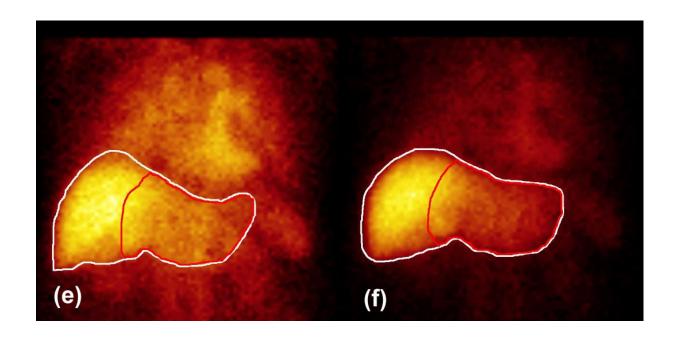
99mTc-mebrofenin HBS

Mebrofenin

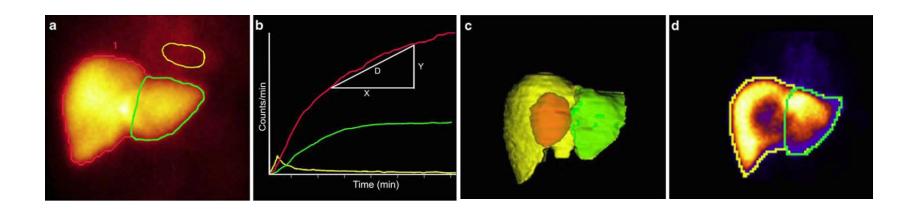
- Iminodiacetic acid (IDA) analogue
- Uptake exclusively in the liver
- Hepatic transport similar to organic anions and to ICG
- Mebrofenin is excreted in the bile canaliculi

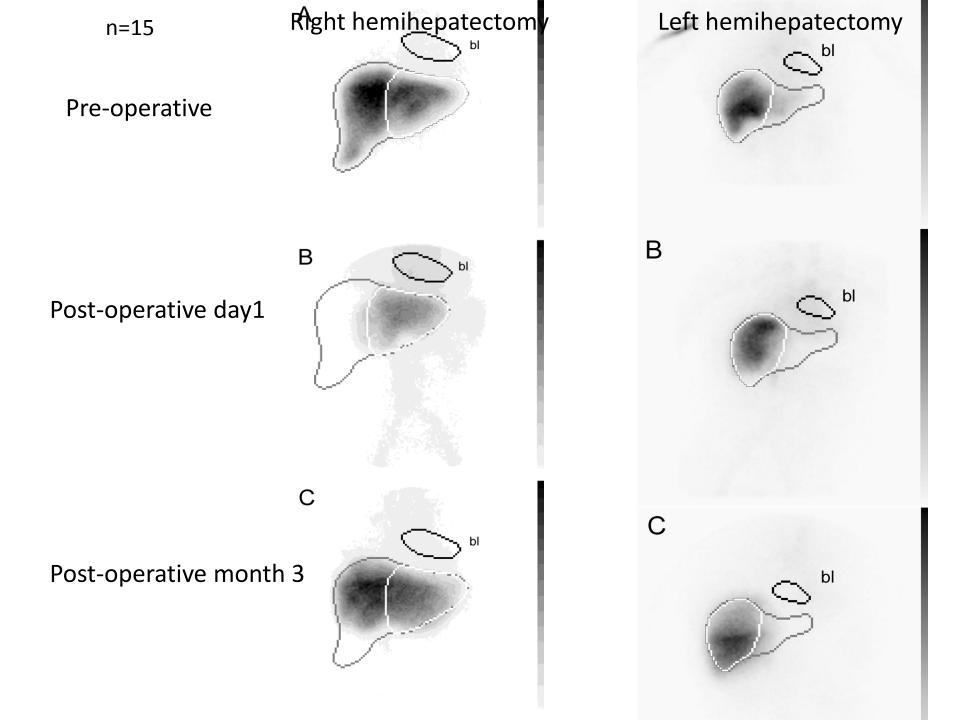
Functional hepato-biliary scintigraphy 99mTc-mebrofenin

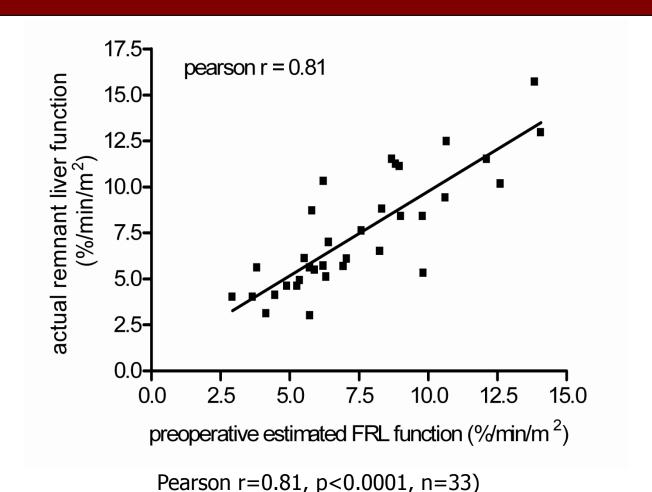
Liver uptake:
% Tc-mebrofenin/min
Hoekstra et al, Ann Surg 2012


Parameters:

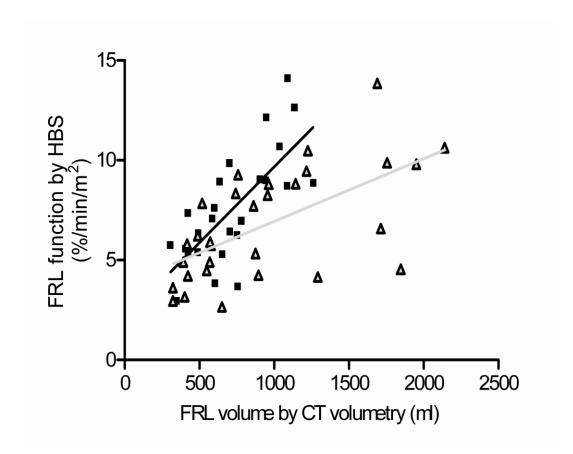
- total liver function
- FRL function


Functional hepato-biliary scintigraphy 99mTc-mebrofenin

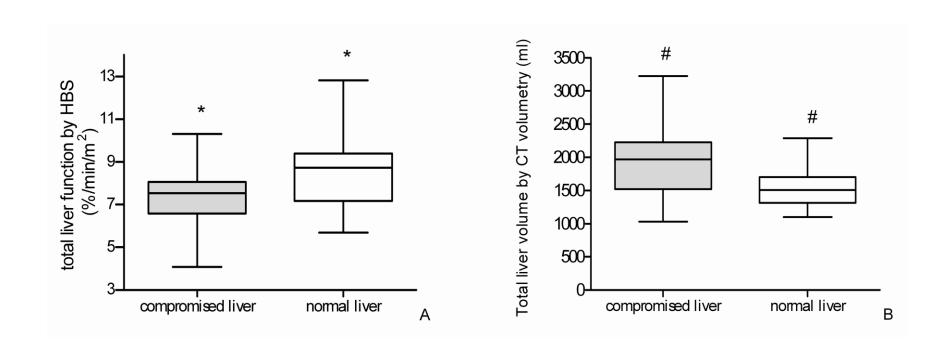

Biliary excretion phase represents the run-off of bile to the gut


Hepatobiliary scintigraphy

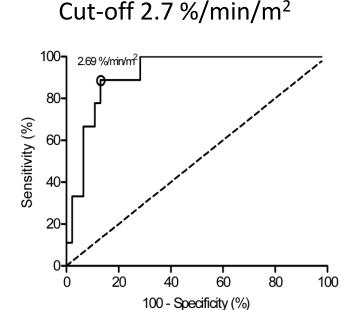
- In the uptake phase: provides simultaneous regional and functional information
- In the excretion phase: defines the quality of biliary drainage



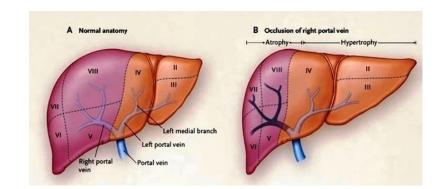
Dynamic 99mTc-mebrofenin HBS


Bennink et al, J Nucl Med 2004

FRL function vs FRL volume


Normal patients (black line): Pearson r = 0.71, p = 0.0001Compromised patients (grey line): Pearson r = 0.61 p < 0.0003

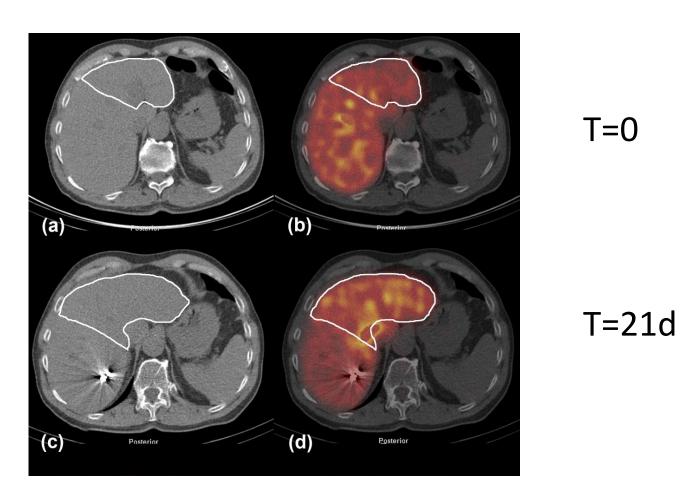
Dynamic 99mTc-mebrofenin HBS


Preoperative prediction of postoperative liver failure in 55 patients undergoing major liver resection

Outcome parameter	FRL function	FRL/TLV ratio	Standardized FRL
Cut-off value	2.69 %/min/m²	Normal liver < 30% Compromised liver < 40%	Normal liver < 30% Compromised liver < 40%
Sensitivity	89%	78%	67 %
Specificity	87%	80%	87 %
PPV	57%	44%	50 %
NPV	98%	95%	93 %
LR+	6.8	4.0	5.1
LR-	0.12	0.19	0.38

Modulation of future remnant liver (FRL)

- Portal vein embolization (PVE)
- Portal vein ligation (PVL)


- PVL in combination with two-stage procedure
- PVL in combination with in situ liver split ALPPS (Associating liver partition with portal vein ligation for staged hepatectomy)

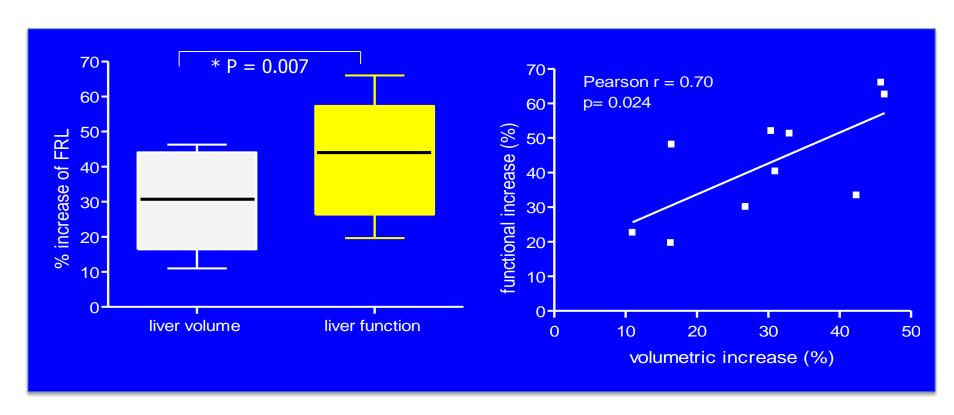
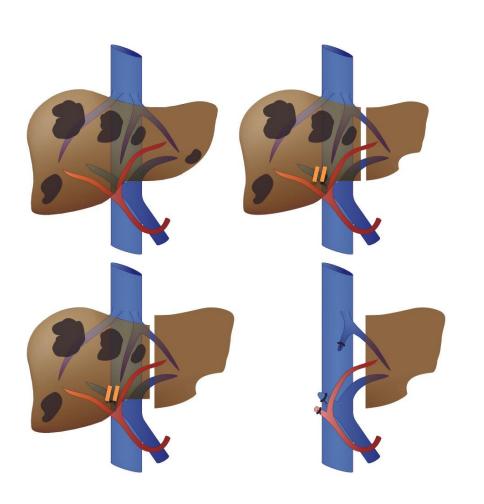

Hepatic volume and function in PVE

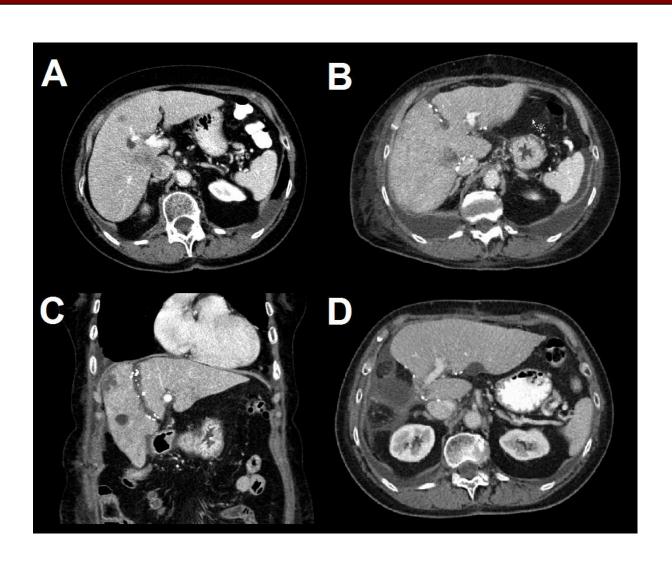
Table 2 Results of the (first) preoperative FRL assessment using CT-volumetry and ^{99m} Tc-mebrofenin hepatobiliary scintigraphy					
with SPECT-CT 163 patients undergoing major liver resection (>3 segments)					
	FRL-volume,	FRL-function,	Standardized FRL-	FRL-BWR≥0.5%	
	% (IQR 25-75)	%/min/m ² (IQR 25-75)	volume, % (IQR 25-75)	weight, n (%)	
All patients,	49.3 (37.3 – 70.1)	4.6 (3.3 – 6.39)	54.3 (38.9 – 77.9)	161 (98.8)	
(n = 163)					
PVE patients,	23.7 (18.7 – 27.8)	1.93 (1.5 – 2.36)	24.5 (18.3 – 29.4)	16 (55.2)	
(n = 29)	21 pts	29 pts	18 pts	13 pts	
Non-PVE patients,	53.9 (37.4 – 73.5)	5.00 (3.49 – 7.10)	57.2 (41.6 – 79.7)	133 (99.3)	
(n = 134)					
FRL, future remnant liver; FRL-volume, percentage FRL of the total liver volume; FRL-BWR, future remnant liver/body weight					
ratio; PVE, portal vein embolization; IQR, interquartile range.					

Hepatic volume and function in PVE



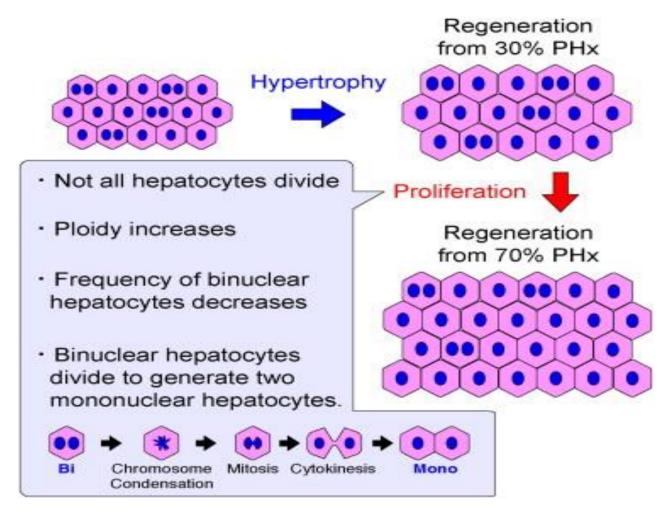
Increase of liver function (99mTc-mebrofenin uptake) exceeds liver volume (CT) after PVE

De Graaf et al, BJS 2011


Hepatic volume and function in ALPPS

Association of Liver Partition and Portal vein ligation for Staged hepatectomy

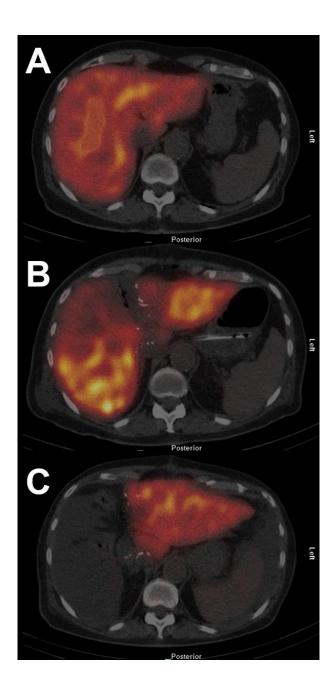
Schnitzbauer et al, Ann Surg 2012


In situ split-technique

Hepatocellular hypertrophy \implies Hyperplasia \implies FRL hypertrophy

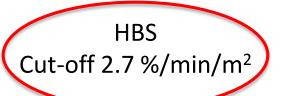
79-year-old patient with CLM ALPPS/ext right hemihepatectomy

Stage I CT POD 3


Stage II undertaken on POD 8 CT POD 20

Baseline

Stage I POD 3


Stage II POD 8 HBS POD 20

Stage I POD 3 Baseline a Stage II POD 20 Stage I POD 8

TABLE 1. Scintigraphic and volumetric measurements of the FRL in a patient who underwent ALPSS					
Event	Total liver	FRL function	Total liver	FRL volume	FRL volume
	function	[%/min]	volume [cm ³]	[cm ³]	[% of total liver
	[%/min]				volume]
Preoperative	12.2	1.5	1204	236	19.6
assessment					
1 st stage of ALPPS					
POD 3	13.3	2.0	1462	383	26.2
POD 8/POD 6	11.9	2.9	1554	412	26.5
2 nd stage of ALPPS					
POD 20	6.25	3.4		759	63.0*

ALPPS Associating Liver Partition and Portal vein Ligation for Staged hepatectomy, FRL future remnant liver, POD postoperative day; * expressed as percentage of the pre

preoperative total liver volume

CONCLUSIONS (I)

- CT volumetry is useful in patients with normal liver parenchyma
- In compromised patients measurement of liver volume is preferably combined with a quantitative liver function test
- The value of standardized CT volumetry (FRLV) and FRL/body weight ratio (>0.5%) needs further clinical assessment

CONCLUSIONS (II)

- ICG-15 clearance is the most widely used quantitative test but variability and discrepancies with clinical outcome have been reported
- Hepatobiliary scintigraphy (HBS) enables "Functional imaging" providing simultaneous morphological and physiological information
- Hepatobiliary scintigraphy shows regional (segmental) functional differences in the liver
- Hepatobiliary scintigraphy provides information on quality of biliary drainage

CONCLUSIONS (III)

- Hepatobiliary scintigraphic mehods are particularly useful in timing of resection after PVE or ALPPS stage 1
 - earlier resection after PVE (3 weeks)
 - more reliable timing of ALPPS stage II (8-10 days)

